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We have studied the thermal and rotational evolution of the neutron star. In order to 

describe the internal dynamical behavior we have considered the creep motion of the pinned 

superfluid vortices in the inner crust. The internal heat generation accompanied by this 

vortex creep motion has also been included in the thermal behavior. It is shown that the 

evolutionary course of the star is characterized by the thermal and dynamical equilibria or 

disequilibria. Via linear analysis we have found that the neutron star in the thermal and 
~ 

~- - - 

dynamical equilibrium state is thermally unstable below a certain critical temperature. This 

critical temperature is determined by the condition that in the unstable regime the thermal 

time is shorter than the dynamical time. It is explained that this t h e d  instability arises 

from the fact that the vortex creep motion is accelerated or decelerated considerably by the 

slight change in temperature. We discuss the onset time of this thermal instability taking 

into account the decay of the magnetic field. 
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L INTRODUCTION 

The neutron star is expected to contain the superfluid in its interior. Since the neutron 

star rotates, the vortex line parallel to the rotation axis is formed in the superfluid. The 

slow relaxation of the pulse frequency after the glitch (sudden jump of the pulse frequency 

in pulsars) has been thought to reflect the weak coupling of the neutron superfluid to the 

charged components. The simple two-component model star with the superfluid core and 

the solid crust (Baym et al. 1969) provided a qualitative explanation for the post-glitch 

behavior in terms of the coupling between the two components. 

The core-crust coupling gives rise to the frictional heat generation, which in turn 

affects the coupling strength itself. Hence, the neutron star is a thermally and dynamically 

coupled system. Greenstein (1975) and Harding, Guyer and Greenstein (1978) examined 

the effect of the frictional heating on the thermal history of the star and predicted that all the 

long-period pulsars may have essentially the same surface temperature, apart from its 
1 

variation with mass. The stability analysis done by Greenstein (1979) indicated that the 

frictional heat generation may give rise to a thermal instability. Recently, Shibazaki and 

Lamb (1986a) also considered the thermal and rotational evolution of the frictionally 

coupled two-component star examining the stability of the equilibrium states that the star 

may undergo in its evolutionary course. They found that the neutron star is thermally 

unstable below a certain critical temperature if the core-crust coupling time has an 

’ exponential dependence on temperature as in the case of the electron scattering from the 

vortex excitation (Feibelman 1971). Whereas, if the coupling time is not dependent on or 

only weakly depends on the temperature, as in the case of electron scattering from the 

magnetized vortex (Sauls, Stein and Serene 1982; Alpar, Langer and Sauls 1984), the 

neutron star was shown to evolve without the thermal and dynamical instability. 

The timing noise analysis of the Crab pulsar (Boynton 1981) and Vela X-1 (Boynton 

et af. 1984) revealed that the neutron star is responding to rotational disturbances like a 
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rigid body. Furthermore, Alpar, Langer and Sauls (1984) showed that the 'P,neutron 

superfluid vortex in the core is strongly magnetized due to the induced proton current and 

couples to the charged components and hence the crust in a very short time. These results 

indicate that the simple two-component model is not an adequate description of the full 

dynamical behavior of the neutron star. 

It is expected that the neutron superfluid in the inner crust is in the 'So pairing state 

and the superfluid vortices are pinned to the lattice nuclei present there. Recently, Alpar et. 

al (1984a) considered the dynamics of a neutron star taking account of the pinned 

superfluid neutrons and developed a general theory for the vortex motion thermally 

activated against the pinning barrier. They interpreted the glitch as an unpinning event of 

the superfluid vortices in the inner crust (Anderson and Itoh 1975) and explained the 

observed post-glitch behaviors excellently as resulting from the recoupling of the pinned 

superfluid to the rest of the star (Alpar et al. 1984b; Alpar, Nandkumar and Pines 1985). 
3 

The outward vortex creep motion accompanies the internal heat generation. Recently, 

Shibazaki and Lamb (1986b; hereafter referred to as Paper I) studied the cooling of the 

neutron star, taking into account internal heating by this vortex creep motion. They found 

that the thermal evolution in the photon cooling era is profoundly affected by the internal 

heating. Hence, this study indicates that the thermal and dynamical behaviors need to be 

combined in order to understand the evolution of the neutron star. 

In this paper we consider the thermal and dynamical evolution of the neutron star, 

noting the stability of the equilibrium state. We assume that the internal dynamical behavior 

of the neutron star is determined by the vortex creep motion. In OII we outline the vortex 

creep model and present the basic equations to describe the thermal and dynamical 

behaviors of the star. In $III the possible evolutionary course is sketched in terms of the 

characteristic equilibrium states. In §IV the stability is examined on the thermal and 

dynamical equilibrium. In $V the physical meaning of the instability found in ON is 

1 
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explained. In the last section we discuss the evolution of the neutron star, comparing the 

results here with the cooling curves calculated in Paper I. 

IL BASIC EQUATIONS IN THE VORTEX CREEP CASE 

The neutron in the inner crust is ' S o  superfluid, and the superfluid vortices are pinned 

to the lattice of nuclei present there since the energy cost per particle to create the normal 

core of the vortex line is reduced by the pinning. The pinned vortex line rotates together 

with the nucleus lattice at the angular velocity of the crust. The superfluid in the core also 

rotates together with the crust since the strong magnetization of the core vortex line yields 

an instantaneous coupling of the core to the crust (Alpar, Langer and Sauls 1984). 

Hereafter, the crust refers to the rest of the neutron star except for the inner crust. If there 

is a relative motion between the crust and the superfluid in the pinning site, 
. 

a=n,-i2c , (1) 

the Bernoulli force acts on the pinned vortex line. Here Gpand Qc are the angular 

velocities of the superfluid in the pinning region and the crusfrespectively, and o is the 

angular velocity lag. When o > 0, the Bernoulli force produces the bias that statistically 

makes the motion of the thermally activated vortices outward. The vortex creep motion 

I transfers the angular momentum from the inner crust to the rest of the star. Consequently, 

the rotation of the inner crust is decelerated and the rotational energy is dissipated into heat. 

2) Basic equations 

We assume uniform rotation for both the pinning region and the crust and 

isothermality throughout the star. The rotational behavior of the crust is determined by 
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where I ,  is the moment of inertia of the crust and Next and Nint are the external and internal 

torques exerting on the crust, respectively. According to a vortex creep theory by Alpar et 

af. (1984a), the internal torque due to the vortex creep motion is given by 

where 4 is the moment of inertia of the pinning region, rp the radial distance of the pinning 

site (rp - 106 cm), Vo the velocity of the microscopic motion of the vortex line (v - 107 

cds ) ,  Ep the average pinning energy (Ep - 1 MeV), T the temperature and k the Bolmann 

constant. Here a,, is the appropriate average'of the critical velocity lag at which the 

Bernoulli force on the vortex line exceeds the pinning force. The value of a, strongly 

depends on the pinning condition in the inner crust. o,, = 10-20 if the pinning is strong, 

a,, = 0.1 -1 if weak, and o, < 0.1 if superweak (see Alpar et al. 1984 b). The value of I, 

depends on the neutron star model, stiff or soft, and is estimated as I,/I -2.5~10-3 for the 

soft star, I# = 5 XlO-3 - 2x10-2 for the moderately stiff satr and Ip/I = 0.14 for the stiff 

star (Nandkumar 1985). Here I is the total moment of inertia given by I = I, + I,. The 

'comparison of the vortex creep model with the glitch observations suggests Ip/I - 0.01 

(Alpar et af. 1984b; Alpar, Nandkumar and Pines 1985). 

The energy equation is written as 

C$=H-A , (4) 

, 
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where C, is the heat capacity, H the internal heating rate and A the cooling rate. The heat 

generation rate due to the vortex creep motion is given by 

H = - I p ~ h  P . 

When the neutron star is hot, it cools by the emission of the neutrino. At lower temperature 

the photon emission from the surface becomes more important. The cooling rate by these 

processes is well approximated by 

A=BY , 

where B and n are constants that depend on the cooling mechanism. In the temperature 

range of interest, the value of n is in the rarage of 2 to 6 (Baym and Pethick 1979; 

Gudmundsson, Pethick and Epstein 1983). The heat capacity for the degenerate matter is 

expressed as 

Cv=aT , (7) 

where a is the constant. The main contribution for the heat capacity is from normal 

, neutrons and electrons. 

EL CHARACT'ERISI'IC EVOLUTIONARY STAGES 

There are two equilibria conceivable in the course of the evolution, dynamical and 

thermal equilibria. The evolutionary stage can be characterized by the thermal and 

dynamical equilibria or disequilibria. 
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1) Dynamical and thermal equilibria 

If the system of pinned superfluid and crust that are coupled through the vortex creep 

motion is in dynamical equilibrium, both components decelerate at the same rate: 

Hereafter, the subscript "0" denotes the equilibrium state value. In order to estimate the 

equlibrium lag in angular velocity, we rewrite Eq. (8) as 

In the situation with which we are concerned, kTo < 10 keV and E, - 1 MeV while the 

logarithmic factor p is in the range of 10 to 40. Hence, we can see that in dynamical 

equilibrium the angular velocity lag is very close to the critcal value: 

1 

In connection with the post-glitch behavior of a pulsar, Alpar et al. (1984a) studied 

the response of the system of pinned superfluid and crust coupled through the vortex creep 

motion when the sudden jump in angular velocity is introduced into the dynamical 

equilibrium state. They found that the dynamical disturbance decays with time, which 

shows that the dynamical equilibrium state is stable. The dynamical relaxation time due to 

the vortex creep is obtained as 
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where z, is the spin-down time defined by 

It is to be noted that the dynamical relaxation time here corresponds to the coupling time of 

the core to the crust in a simple two-component model (Shibazaki and Lamb 1986a). 

Hence, the dynamical equilibrium is possible when 

z <<zm . dr 

Thermal equilibrium refers to the state where the heating and cooling rates are in 

balance: 

n -1oh =BTo . p 0 PO 

I 

The time scale that characterizes the thermal behavior is the cooling (or heating) time 

defined by 
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In order for thermal equilibrium to be achieved, the cooling time needs to be much shorter 

than the spin-down time: 

2) Thermal and dynamical evolution 

The neutron star at birth is considered to be very hot, with a temperature of - 10" K, 

and it rotates rapidly as a rigid body. Initially, it cools extremely rapidly because of the 

high neutrino emissivity. When the thermal energy becomes less than the pinning energy, 

EP E 
T s f =  1.2X10'0 (-1 K 

1 MeV 

the neutron superfluid vortices in the inner crust start to be pinned to the lattice nuclei. The 

relative motion between the superfluid in the inner crust and the rest of the star is produced 

by the external torque, and then the system evolves to dynamical equlibrium through the 

vortex creep motion. The cooling calculations in Paper I show that if the pinning is weak 

or superweak depending on the neutrino emission mechanism, in the neutrino cooling era 

the heat generated by the vortex creep is negligible compared to the heat content of the star. 

, The neutrino emission is far dominant over the internal heat generation. Hence, the star is 

not in thermal equilibrium. Since the dynamical equilibrium itself is stable, this stage 

persists until before the photon cooling era. 

In the weak or superweak pinning regime (depending on the neutrino emissivity) the 

heat generation due to the vortex creep becomes the dominant energy source in the photon 

cooling era, while in the strong or weak pinning regime it controls the thermal evolution 

even from the neutrino cooling era. In this situation the thermal equilibrium is also possible 
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in addition to the dynamical equilibrium. The star will cool and slow down, maintaining 

both equilibria if stable. If unstable, however, this stage will not persist even if it is once 

reached, and the subsequent evolution may be complicated. 

It has been discussed in previous works (Greenstein 1979; Shibazaki and Lamb 

1986a) that in the simple two-component case the crust decouples from the superfluid core 

at the later evolutionary stage with lower temperature when the coupling time becomes 

longer than the spin-down time. In the vortex creep case the decoupling condition is given 

by Tdr > T,, which together with Eq. (1 1) yields 

- E -1 
OCr ) (1) To rads-! 

O.lrad/s 1-v f2& 9x10-l2 ( 

Equation (1 8) indicates that in reality there will be no decoupling between the crust and the 

pinned superfluid in the inner crust and the star ,  ;f stable, will slow down as a whole, 

maintaining the thermal and dynamical equilibrium. 

The above discussion shows that the stability of the thermal and dynamical 

equilibrum state is quite important to obtain an understanding of the entire evolutionary 

course of the neutron star. In the next section we examine the stability of this state. 

TV. STABILITY OF THE THERMAL AND DYNMCAL EQUILIEEUU’M 

1 STATE 

We examine the stability of the thermal and dynamical equlibrium state determined 

by Eqs. (8) and (14). 

1) Minitesimal perturbation 
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In order to know the stability or instability, we perturb the equilibrium state and 

observe the subsequent variation of the perturbation: 

where 6Qc, 6QP and 6T are perturbations of angular velocities of crust and pinned 

superfluid and temperature, respectively. If the perturbation diminishes with time, we 

judge that the equilibrium state is stable and vice versa. 

Inserting Eq. (19), the basic equations (2), (3) and (4) are linearized as 

a. 6T P 
+ - ( l - F ) -  E * 

kT0 Ocr To 

where the external torque is assumed to be a function of R, and Tcool is defined by 

TO 

=a01 
TaOl I - 

We consider the sinusoidal solution such as that given by 
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-ivt -- --E e 
6% 

Qco 
1 

-ivt -- - E2e P 6n 

QPO 

-ivt - ~e 
6T - -  
TO 3 

where cl, Q,  and^, are the infinitesimal constants. We are interested in the solution that 

has the characteristic time much shorter than the spin-down time: 

Hence, we keep ilc0, Qpo,and To constant ‘when we take a time derivative of the 

perturbation in Eq. (24). 

Hereafter we neglect the external torque in Eq. (20) for simplicity since we found that 

its inclusion does not change the essential results on the instability. The neglect of the 

external torque term in Eq. (20) leads to the conservation of angular momentum: 

Ic6Qc+ Ip6Qp = 0 . 
1 

The moment of inertia of the pinning region is suggested to be small as compared to the 

total from both the theoretical calculation and the observed post-glitch behavior of the 

pulsar. Here, we consider the case of 

Ip<< I - IC 
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(we have also analyzed the case Ip >> I, and obtained essentially the same results). 

Equations (26) and (27) yield 

which indicates that the 6Q, terms in Eqs. (21) and (22) can be ignored compared to the 

6% terms. 

Inserting Eq. (24) into Eqs. (21) and (22) and making use of the approximations 

mentioned above, we derive 

where 

and 

kTo Ga 
6=1+-- 

Ep n p o  

The factors 6 ,  6, and E are all of order one in the situation of interest in the current 

investigation. 
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2) Solutions 

The property of the solutions to Eq. (29) is understood by examining the extreme 

cases. 

In this limit the first term in the bracket of Eq. (29) can be neglected. The two 

solutions obtained are: 

and 
. 

Since the imaginary part of v is positive in both solutions, the perturbation grows with 

time, and hence the equilibrium state is unstable. It is to be noted that the growth times (4 

l/p 1) of the perturbation in solutions VI and v2 are related to the cooling and dynamical 

relaxation times, respectively. This evidence implies that the unstable modes VI and v2 

may be thermal and dynamical insabilities, respectively. 

I 

Neglecting the second term in the bracket, Eq. (29) yields two solutions given by 
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and 

=& -1 
v 2 - - ( - )  i . 

6 

The negative imaginary part of these solutions indicates that the perturbation decays with 

time and hence the star is stable in this limit. 

3) Instability criterion 

It is known from the above results that the thermal and dynamical equilibrium state 

are unstable when the thermal time defined by 7th = zmol/p is shorter than the dynamical 

relaxation time: 

Using Eqs. (7), (8), (10)-(12) and (15), Eq. (37) is rewritten, and the instability criterion is 

expressed in a more convenient way: 
I 
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It is now concluded that the thermal and dynamical equilibrium state of the neutron with the 

vortex creep motion in its intenor is unstable when it cools down below a critical 

temperature T,. 
I 

V. PHYSICAL INTERPRETATION OF THE INSTABILITY 

We study the physical meaning of the two unstable modes found in the previous 

section. 

1) Thermal response 

First, we focus attention on the thermal behavior of the star when the temperature is 

perturbed. Under the condition of Eq. (37), the variation of the dynamical quantity can be 

neglected through the evolution of the temperatrue perturbation since the dynamical 

relaxation time is much longer than the thermal time. Neglecting the Sac and 8% terms in 

Eqs. (21) and (22) yields 

The solution to Eqs. (39) and (40) is calculated as 

6T(t) = 6T(O) exp { t / (2) } . 
5 



17 

The temperature perturbation grows with the time scale of ~d€,. 
The cause of this instability is easily understood as follows. Consider the initial 

increase in temperature as an input perturbation. According to Eq. (3), higher temperature 

produces larger internal torque. The internal heat generation is enhanced, which leads to 

further increase in temperature. Thus, the unstable mode vl in the previous section is now 

identified as thermal instability. 

2) Dynamical response 

Next, we consider the dynamical perturbation maintaining the thermal equilibrium. 

Assuming thermal equilibrium and no external torque together with Eq. (27), Eqs. (20) - 
(22) reduce to 

O0 6T P 
sh E P i2 PO si2 E - -  p -  (1+--)"+- ( l -F ) -  

I$O kT0 Zcr np0 kT 0 Ocr To 

Rpo sn "hp 6T 
-n-=O . +- -- 
T 

O O  Qpo a. 0 

Equations (42) - (44) can be solved to yield 

nE (45) 
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The perturbation grows approximately with a time scale of the dynamical relaxation time. 

In order to understand the physical cause of this instability, consider the dynamical 

perturbation in which GI, increases and C$ decreases initially. The decrease in angular 

velocity lag accompanies the heat generation, which increases the temperature. The higher 

temperature produces the larger internal torque, which gives rise to further increase and 

decrease in Qcand Qp, respectively. Thus, the unstable mode v2 found in the previous 

section is identified as the dynamical instability. 

It should be noted that this dynamical instability, even if triggered, will be suppressed 

to proceed in reality because the thermal equilibrium assumed in the course of the 

perturbation is already unstable and thermal instability develops much faster than dynamical 

instability. 

. 
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M. DISCUSSION AND CONCLUDING REMARKS 

We have found that the thermal and dynamical equilibrium state of the neutron star is 

stable above a certain critical temperature, but unstable below it. If the pinning of vortices 

to the lattice nuclei in the inner crust is weak or superweak, this critical temperature is less 

than 10%. Hence, this critical moment is expected to be in the photon cooling era. 

Whereas, in the case of the stiff star with the strongly pinned crustal superfluid (though 

less likely as explained in Paper I), this critical temperature can be as high as -10% at 

which the neutrino emission is the dominant cooling mechanism. Our cooling calculations 

in Paper I indicate that in every case the neutron star has already established the thermal 

balance between the cooling and heating rates well before this critical temperature. 

Therefore, it is quite likely that the neutron star approaches and reaches the critical 

temperature maintaining the thermal and dynamical equilibrium The direct plunge into the 

unstable equilibrium state with temperature mich lower than the critical value will not 

happen unless the initial temperature at birth is unreasonably low. 

The time for the neutron star to reach the critical temperature depends on the pinning 

condition, the star model, and also the magnetic field. The cooling curve in Paper I 

indicates that in the strong pinning regime the star can reach the critical temperature at the 

age of as young as -103~. The comparisons of the vortex creep theory with the 

observational results on the Vela Pulsar and nearby old pulsars (Alpar et al. 1984b; Paper 

I I), however, suggest that the weak and/or superweak pinning regime is more Likely, which 

is consistent with the recent theoretical study on the property of the crustal superfluid (Chen 

et al. 1985). Furthermore, the vortex creep theory, when combined with the glitch 

observations, indicates that the stiff star is less likely. If we take into account these facts, 

then, we expect that the star at the critical temperature may be older than 108~ .  in the case 

of no magnetic field decay (Paper I). If the magnetic field decays, on the other hand, the 

time at the critical temperature becomes much earlier because the star cools down steeply 



v I 

20 
with the time constant of the field decay as discussd in Paper I. Taking into account the 

current estimates for the magnetic field decay by Lyne, Manchester and Taylor (1985) and 

T a m  and van der Heuvel(1986b), we expect the thennal instability around 106-107 y. 

How does the thermal instability grow and effect the subsequent evolution of the 

neutron start? In order to know this it is necessary to perform a detailed numerical 

calculation including the nonlinear effects. If this thermal instability has some distinct 

feature, then its observation will provide the important information regarding the interior 

properties and magnetic field of the neutron star. 

We thank M. A. Alpar for useful discussions. This research was supported in part 

by NASA grants NSG 7563 (at Illinois) and NAGW 299 (at Stanford), and NSF grants 

PHY 80-25605 (at Illinois) and PHY 81-18387 (at Stanford). 
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